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SUMMARY 
The GWABLUP (Genome-Wide Association based Best Linear Unbiased Prediction) approach 

used GWA analysis results to differentially weigh the SNPs in genomic prediction, and was found 
to improve the reliabilities of genomic predictions. However, the proposed multi-trait GWABLUP 
method assumed that the SNP weights were the same across the traits. Here we extended and 
validated the multi-trait GWABLUP method towards using trait-specific SNP weights.  In a 3-trait 
dairy data set, multi-trait GWAS estimates of SNP effects and their standard errors were translated 
into trait-specific likelihood ratios for the SNPs having trait effects and posterior probabilities using 
the GWABLUP approach. This produced trait-specific prior (co)variance matrices for each SNP, 
which were applied in a SNP-BLUP model for genomic predictions, implemented in the APEX 
linear model suite. In a validation population, the trait-specific SNP weights resulted in more reliable 
predictions for all three traits. Especially, for somatic cell count, which was hardly related to the 
other traits, the use of the same weights across all traits was harming genomic predictions. The use 
of trait-specific SNP weights overcame this problem.  In multi-trait GWABLUP analyses of ~30,000 
reference population cows, trait-specific SNP weights resulted in up to 13% more reliable genomic 
predictions than unweighted SNP-BLUP, and improved genomic predictions for all three studied 
traits. 

 
INTRODUCTION 

A limitation of GBLUP and SNP-BLUP is their assumption that all SNPs contribute equally to 
the total genetic variance. Bayesian variable selection methods allocate more variance/weight to the 
most important SNPs but are complex and computationally demanding. Recently, GWABLUP was 
proposed which uses deterministic weights based on GWAS (Genome Wide Association Study) 
results (Meuwissen et al. 2024). Since the SNP weights are (pre)determined by the GWAS signals, 
GWABLUP is based either on a weighted SNP-BLUP or on a weighted G-matrix in GBLUP, which 
may both be extended to single step methods (ssGWABLUP).  Also a multi-trait extension of 
GWABLUP was proposed assuming that SNP weights are equal across the traits (Meuwissen et al. 
2024). The latter assumed that all traits are affected by the same QTL (Quantitative Trait Loci). But 
generally, different traits will be affected by different QTL, and the use of the same SNP weights 
across the traits is suboptimal. Our aim is here to extend the multi-trait GWABUP method to using 
SNP weights that are trait-specific and to compare the results to using equal weights across the traits. 
The methods are compared in the same dairy cattle data set as Meuwissen et al. (2024), and using 
the APEX linear models suite (Boerner 2024), which implements multi-trait SNP-BLUP with 
different (co)variance matrices per SNP and thus allows for different weights per SNP and per trait. 

 
MATERIALS AND METHODS 

The 3-trait dairy data set of Meuwissen et al. (2024) included the yield deviations (YD) of milk 
and protein yield and somatic cell count (SCC) and their reliability on 32,201 Norwegian Red cows, 
and was kindly provided by Geno SA (www.geno.no). Estimates of heritabilities, genetic and 
environmental correlations of the traits are depicted in Table 1. 
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Table 1. Heritabilities (diagonals), genetic correlations (below diagonals), and residual 
correlations (above diagonals) of the dairy traits 
 

 Milk Prot SCC 
Milk 0.26 0.96 -0.17 
Protein 0.85 0.20 0.16 
SCC 0.10 0.10 0.16 

 
In Meuwissen et al. (2024), a canonically transformation of the 3 traits was performed (Ducrocq 

et al. 1993) which resulted in 3 genetically and environmentally independent canonical traits with 
standardised environmental variances of 1 and genetic variances of 0.16, 0.29 and 1.44, respectively. 
The data also included imputed HD genotypes on 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠= 617,739 SNPs for all 32,201 cows (see 
Meuwissen et al. (2024) for details). Uniform SNP weights across the traits were obtained from the 
combined log-likelihood ratios of the GWAS of the 3 canonical traits as described in Meuwissen et 
al. (2024). The GWAS of the three canonical traits resulted also in estimates of their SNP effects 
and standard errors for each of the canonical traits. To obtain trait-specific SNP weights, these 
canonical trait SNP effects were back-transformed to original trait SNP effects together with their 
standard errors. Following Meuwissen et al. (2024), GWABLUP log-likelihood ratios per SNP and 
trait were calculated as 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡 = 0.5 𝑏𝑏𝑡𝑡𝑡𝑡2� 𝑠𝑠𝑒𝑒𝑡𝑡𝑡𝑡2� , 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡 where  is the log-likelihood ratio, 𝑏𝑏𝑡𝑡𝑡𝑡�  is the 
GWAS estimate of the effect, and 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 is the standard error of SNP j for trait t. The model averaging 
of MCMC Bayesian genomic prediction schemes is to some extend mimicked by calculating the 
moving average of the likelihood ratios, i.e. by averaging the likelihood ratios of the current SNP 
and two adjacent SNPs to the left and two adjacent SNPs to the right, resulting in 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡������ . Following 
Meuwissen et al. (2024), posterior probabilities that the SNPs have non-zero effects, which serve as 
trait-specific weights for the SNPs, were calculated for trait t and SNP j as 
𝜋𝜋 𝑒𝑒𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡������ [𝜋𝜋𝑒𝑒𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡������ + (1 − 𝜋𝜋)]�  where the prior probability of non-zero SNP effects is 𝜋𝜋 = 0.001. 

The model for the multi-trait SNP-BLUP is 𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝑒𝑒 where 𝑦𝑦 is a vector of yield 
deviations for the 3 traits (ordered by traits within cows); 𝑋𝑋 = 1𝑛𝑛𝑎𝑎 ⊗ 𝐼𝐼3 is a design matrix linking 
the records to their trait means (𝑛𝑛𝑎𝑎 is the number of animals); 𝜇𝜇 is a vector of estimates of trait 
means for the 3 traits; 𝑍𝑍 = 𝑀𝑀⊗ 𝐼𝐼3 with M being a (𝑛𝑛𝑎𝑎 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) matrix of centred allele counts 
of the cows; b is a vector of (3 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) multi-trait SNP effects (ordered by traits within SNPs). 
The prior distribution of the residuals was 𝑒𝑒 ∼ 𝑁𝑁(0,𝑊𝑊⊗𝑅𝑅), where R is the residual (co)variance 
matrix of the traits (Table 1) and W is a (𝑛𝑛𝑎𝑎 × 𝑛𝑛𝑎𝑎) diagonal matrix with the inverses of the weights 
of the yield deviations on the diagonal. For the analysis the multi-trait SNP-BLUP method of Liu et 
al. (2014) is used, where in our data all animals are genotyped and pedigree relationships are not 
used and thus set to an identity matrix. The (co)variances of the breeding values and SNP effects 
(traits within cows and SNPs) is modelled by 𝑣𝑣𝑣𝑣𝑣𝑣(𝑢𝑢) = 𝑍𝑍Θ𝑍𝑍′ + 𝜀𝜀𝐼𝐼𝑛𝑛𝑎𝑎 , 𝑣𝑣𝑣𝑣𝑣𝑣(𝑏𝑏) =
Θ, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢, 𝑏𝑏) = 𝑍𝑍Θ, where 𝑢𝑢 = 𝑍𝑍𝑍𝑍 is a vector of multi-trait breeding values; ε is a small number 
(ε=0.01  was used here) added to regularise the matrix and making 𝑣𝑣𝑣𝑣𝑣𝑣([𝑢𝑢, 𝑏𝑏]) non-singular; and 
Θ is a block-diagonal matrix of 3 × 3 blocks Θ = ∑⊕ 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 where ⊕ denotes the direct sum. 
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 is the 3 × 3 SNP specific (co)variance matrix across 3 traits, i.e. the SNP effects are a priori 
assumed unrelated with prior distributions 𝑏𝑏𝑗𝑗 ∼ 𝑁𝑁(0,𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗), where 𝑏𝑏𝑗𝑗 is a 3 × 1 vector of effects 

of SNP j. Let 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐺𝐺 ∑𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘=1 2⁄ 𝑝𝑝𝑘𝑘(1 − 𝑝𝑝𝑘𝑘) where G is the genetic (co)variance matrix of 
traits and 𝑝𝑝𝑘𝑘 is the allele-frequency of SNP k. Further let 𝑃𝑃 be an 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 3 matrix of posterior 
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probability of SNPs obtained the for 3 canonical traits (Meuwissen et al. 2024) with 𝑃𝑃𝑡𝑡,𝑗𝑗 =
𝜋𝜋 𝑒𝑒𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡������ [𝜋𝜋𝑒𝑒𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡������ + (1 − 𝜋𝜋)]�  ,  and ℎ𝑡𝑡 be a vector of 1 of length 3 and ℎ𝑠𝑠 be a vector of 1 of length 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠. In case of regular multi-trait unweighted SNP-BLUP (SNPunw-BLUP) 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐼𝐼𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⊗
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆, in case of equal weights across the traits (SNPeqw-BLUP) 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 =
((𝑃𝑃ℎ𝑡𝑡) ((ℎ𝑠𝑠 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠⁄ )′𝑃𝑃(ℎ𝑡𝑡 3⁄ ))⁄ ) ⊗𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆, and in case of SNP and trait-specific weights (SNPtsw-

BLUP), 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = Ω(𝐼𝐼𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⊗ 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆)Ω,Ω = 𝐼𝐼𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×3�(𝑃𝑃 ((ℎ𝑠𝑠 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠⁄ )′𝑃𝑃(ℎ𝑡𝑡 3⁄ ))⁄ )′��������������������������������������������������������⃗ . An 

efficient iterative double-preconditioned conjugate gradient algorithm (Vandenplas et al. 2019) was 
used to solve these equations as implemented in the APEX linear models suite (Boerner 2024). This 
analysis of the SNPunw-BLUP, SNPeqw-BLUP and SNPtsw-BLUP models yielded multi-trait 
estimates of SNP effects and of animal genetic effects. 

The records of cows born in 2018 (1988 cows) were used for validation, and their YDs were 
masked from the above data analyses. The remaining 30,213 cows were used for the training of the 
models, i.e. they were used for the GWAS analyses and the estimation of SNP effects. These SNP 
effects were used to obtain multi-trait breeding value estimates (EBVs) of the validation cows. The 
squared correlations between the EBVs of the 1988 validation cows and their YDs were used as an 
indicator of the reliabilities of the EBVs. 

 
RESULTS AND DISCUSSION 

Table 2 shows the reliabilities of the multi-trait genomic predictions measured as the squared 
correlations between GEBV and YDs for milk- and protein yields and SCC of the 1988 validation 
cows. The YD reliabilities for milk, protein and SCC are 0.409, 0.326, and 0.246, respectively 
(Meuwissen et al. 2024). When expressed relative to the YD reliabilities the reliabilities of SNPunw-
BLUP are 0.49 (=0.199/0.409), 0.54, and 0.68, for milk, protein and SCC, respectively. 
The use of SNP weights in SNPeqw-BLUP and SNPtsw-BLUP models significantly improved 
genomic prediction reliabilities for milk and protein yields by 11-13%. SNPtsw-BLUP obtained the 
highest reliability for all three traits, albeit the improvement for SCC was minor and not statistically 
significant. 
 
Table 2. Reliabilities of genomic predictions measured as the squared correlations between 
GEBVs(𝑔𝑔𝑣𝑣�) and yield deviations(𝑦𝑦𝑣𝑣) of 1988 validation cows 
 

SNP-BLUP Model 𝒄𝒄𝒄𝒄𝒄𝒄(𝒚𝒚𝒗𝒗,𝒈𝒈�𝒗𝒗)𝟐𝟐 *,** 
Milk  Protein SCC 

SNPunw-BLUP*** 0.199a  0.178a 0.168a 
SNPeqw-BLUP*** 0.223b  0.197b 0.160a 
SNPtsw-BLUP*** 0.226b  0.201b 0.169a 
*Standard errors of 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑣𝑣 ,𝑔𝑔�𝑣𝑣)2 are between 0.006 and 0.008. 
**Different letters in the superscripts denote statistically significant differences (P < 0.05) 
***Subscripts unw, teqw, and tsw mean unweighted, equal weights across the traits, and unequal weights 
across the traits, respectively. 

 
Table 3 shows inflation biases of the multi-trait predictions measured as the regression 

coefficients of the yield deviations on the GEBVs for the 1988 validation cows. The inflation bias 
was only significant for the SCC analysis without SNP weights, where there was a deflation bias. 
The analyses that used SNP weights yielded virtually unbiased genomic predictions. 
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Table 3. Inflation bias of genomic predictions measured as the regression coefficient of yield 
deviations(𝑦𝑦𝑣𝑣) on GEBVs(𝑔𝑔𝑣𝑣�) for 1988 validation cows 
 

SNP-BLUP Model 𝒃𝒃𝒚𝒚𝒗𝒗,𝒈𝒈�𝒗𝒗 * 
Milk  Protein SCC 

SNPunw-BLUP** 1.08  1.07 1.19 
SNPteqw-BLUP** 1.01  1.00 1.06 
SNPtsw-BLUP** 0.99  0.98 1.01 

*Standard errors of 𝑏𝑏𝑦𝑦𝑣𝑣,𝑔𝑔�𝑣𝑣 are between 0.04 and 0.06. 
**Subscripts unw, teqw, and tsw mean unweighted, equal weights across the traits, and unequal weights 
across the traits, respectively. 

 
It seems natural to combine the GWAS signals across the traits by a multi-trait GWAS 

(Meuwissen et al. 2024), which makes optimal use of the data. But multi-trait GWAS analyses are 
computationally rather complicated, and simpler single-trait GWAS based approaches may be 
preferred. For SNPtsw-BLUP models, single-trait GWAS analyses may be directly used to provide 
the trait-specific SNP weights. If the single-trait SNP analyses are not very powerful (do not result 
in clear genome-wide significant QTL signals), the use a multi-trait GWAS analysis may be 
worthwhile. The trait-specific SNP weights applied in SNPtsw-BLUP adjust the prior variances of 
the traits on a per SNP basis, but not the correlations between the traits. A more flexible model 
would also estimate correlations of SNP effects on a per SNP basis. Gebreyesus et al. (2017) 
estimated correlations for groups of SNPs and obtained improved prediction reliabilities for milk 
composition traits. More research will be needed to investigate whether SNP specific correlations 
would increase the reliabilities of the genomic predictions. 
 
CONCLUSION 

The model with trait-specific SNP weights yielded EBVs with the highest reliability for all three 
traits analysed. For SCC, the model with identical SNP weights reduced the reliability of the EBV 
compared to unweighted SNP-BLUP. This problem was remedied by the use of trait-specific SNP 
weights. The multi-trait GWABLUP models yielded up to 13% more reliable EBV compared to 
unweighted multi-trait SNP-BLUP. 
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